图像分类通常使用卷积神经网络(CNN)。设计一个简单的CNN结构,比如几个卷积层,然后是全连接层。或者使用预训练模型,比如ResNet。
数据预处理和加载:PyTorch提供了torchvision库,里面有transforms,可以用来做数据增强和标准化。比如,对训练集做随机裁剪、水平翻转,然后转换成Tensor,并归一化。
安装必要的库
确保已经安装了torch和torchvision。如果没有安装,可以使用以下命令进行安装:
pip install torch torchvision
导入库并设置GPU设备
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torchvision import models
import time
import os
# 检查是否有可用的GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")
加载和预处理数据
使用CIFAR-数据集,并进行一些数据增强和标准化。
# 数据预处理和增强
transform_train = transforms.Compose([
transforms.RandomHorizontalFlip(), # 随机水平翻转
transforms.RandomCrop(, padding=4), # 随机裁剪
transforms.ToTensor(),
transforms.Normalize((, , ),
(, , )),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((, , ),
(, , )),
])
# 下载并加载训练数据
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=,
shuffle=True, num_workers=2)
# 下载并加载测试数据
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=,
shuffle=False, num_workers=2)
# CIFAR-的类别
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
定义模型
使用预训练的ResNet18模型,并替换其最后的全连接层以适应CIFAR-的个类别。
# 加载预训练的ResNet18模型
model = models.resnet18(pretrained=True)
# 冻结所有参数
for param in model.parameters():
param.requires_grad = False
# 替换最后的全连接层
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, ) # CIFAR-有个类别
model = model.to(device)
设置损失函数和优化器
由于我们冻结了预训练模型的参数,只有最后的全连接层的参数需要更新,因此优化器的参数只包含model.fc.parameters()。
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.fc.parameters(), lr=)
训练模型
num_epochs =
since = time.time()
for epoch in range(num_epochs):
model.train()
running_loss =
running_corrects = 0
for inputs, labels in trainloader:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
# 前向传播
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# 反向传播和优化
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(trainset)
epoch_acc = running_corrects.double() / len(trainset)
print(f'Epoch {epoch+1}/{num_epochs} 损失: {epoch_loss:.4f} 准确率: {epoch_acc:.4f}')
# 在每个epoch结束时在测试集上评估
model.eval()
test_loss =
test_corrects = 0
with torch.no_grad():
for inputs, labels in testloader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
test_loss += loss.item() * inputs.size(0)
test_corrects += torch.sum(preds == labels.data)
test_epoch_loss = test_loss / len(testset)
test_epoch_acc = test_corrects.double() / len(testset)
print(f'测试集 损失: {test_epoch_loss:.4f} 准确率: {test_epoch_acc:.4f}')
time_elapsed = time.time() - since
print(f'训练完成,总耗时: {time_elapsed//:.0f}m {time_elapsed%:.0f}s')
评估模型
训练完成后,在测试集上评估模型的性能。
# 最终在测试集上的评估
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in testloader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'测试集上的准确率: { * correct / total:.2f}%')